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Maximal connected spaces

Definition
A topological space is called

maximal connected [Thomas, 1968] if it is connected and has
no connected strict expansion;
essentially connected [Guthrie–Stone, 1973] if it is connected
and every connected expansion has the same connected
subsets.



Maximal connected spaces

Facts
Both maximal connected spaces and essentially connected
spaces are stable under connected subspaces.
[Guthrie–Reynolds–Stone, 1973], [Guthrie–Stone, 1973]
The real line is essentially connected [Hildebrand, 1967] and it
has a maximal connected expansion [Simon, 1978],
[Guthrie–Stone–Wage, 1978].
No Hausdorff connected space with a dispersion point has a
maximal connected expansion. [Guthrie–Stone, 1973]
There are Hausdorff maximal connected spaces, but it is not
known whether there are nondegenerate regular maximal
connected spaces.



Implications between the classes

Definition
Recall the following properties of a topological space X .

X is submaximal if every its dense subset is open.
X is nodec if every its nowhere dense subset is closed.
X is irresolvable if it has no two disjoint dense subsets.
X is T 1

2
if every its singleton is open or closed.

We have the following implications.
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Finitely generated spaces

Definition
A topological space X is called finitely generated or Alexandrov if
every intersection of open sets is open. Equivalently, if

A =
⋃

x∈A {x} for every A ⊆ X .



Finitely generated maximal connected spaces

[Thomas, 1968] characterized finitely generated maximal connected
spaces, we may reformulate the characterization as follows.

Proposition
Let X be a finitely generated T 1

2
space. Let I(X ) be the set of all

isolated points.
The topology is uniquely determined by the bipartite graph
GX with bipartition 〈I(X ), X \ I(X )〉 and with an edge
between x ∈ I(X ) and y ∈ X \ I(X ) if and only if {x} 3 y .
X is connected ⇐⇒ GX is connected as a graph.
X is maximal connected ⇐⇒ GX is a tree.

Therefore, finitely generated maximal connected spaces correspond
to trees with fixed ordered bipartition.



Finitely generated maximal connected spaces

· · ·
A principal ultrafilter space.

· · ·

A principal ultraideal space.

The Sierpiński space.

· · · · · ·

The Khalimsky line.

Figure: Examples of finitely generated maximal connected spaces.



Finitely generated maximal connected spaces

Figure: All nondegenerate maximal connected spaces
with at most five elements.



I-spaces

Definition
Let X be a topological space. By I(X ) we denote the set of all
isolated points of X .

X is an I-space if X \ I(X ) is discrete.
X is I-dense if I(X ) = X .
X is I-flavored if I(X ) \ I(X ) is discrete.

I-spaces were considered in [Arhangel’skii–Collins, 1995].
We are interested in maximal connected I-spaces, a class
containing finitely generated maximal connected spaces.



I-spaces

We have the following implications between the classes.
The red part is a meet semilattice with respect to conjunction.
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Maximal connected I-spaces

The green part collapses in the realm of maximal connected
spaces.
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Tree sums of topological spaces

Definition
Let 〈Xi : i ∈ I〉 be an indexed family of topological spaces, ∼ an
equivalence on

∑
i∈I Xi , and X :=

∑
i∈I Xi/∼. We consider

the canonical maps ei : Xi → X ,
the canonical quotient map q :

∑
i∈I Xi → X ,

the set of gluing points SX := {x ∈ X : |q−1(x)| > 1},
the gluing graph GX with vertices I t SX and edges of from
s →x i where s ∈ SX , i ∈ I, and x ∈ Xi such that ei(x) = s.

We say that X is a tree sum if GX is a tree, i.e. for every pair of
distinct vertices there is a unique undirected path connecting them.

We just glue topological spaces in a way that the spaces are
preserved, two spaces may be glued only at one point, and the
global structure of connections forms a tree.



Tree sums of topological spaces

Proposition
A topological space X is naturally homeomorphic to a tree sum of
a family of its subspaces 〈Xi : i ∈ I〉 if and only if the following
conditions hold.

1
⋃

i∈I Xi = X ,
2 X is inductively generated by embeddings {ei : Xi → X}i∈I ,
3 G is a tree, where G is the graph on S t I satisfying

S := {x ∈ X : |{i ∈ I : x ∈ Xi}| ≥ 2},
s → i is an edge if and only if s ∈ S, i ∈ I, and s ∈ Xi .



Tree sums of maximal connected spaces

Definition

We say that A ⊆ X is an I-subset of X if it is a union of an
open discrete subset and a closed discrete subset of X .
We say that (the gluing of) a tree sum is I-compatible if we
never glue an isolated point to a non-isolated point.

Theorem [B.]

Let X be a tree sum of nondegenerate spaces 〈Xi : i ∈ I〉.
The following conditions are equivalent.

1 X is maximal connected.
2 Every Xi is maximal connected and SX is an I-subset of X.
3 Every Xi is maximal connected, SX ∩ Xi is an I-subset of Xi

for every i ∈ I, and the gluing is I-compatible.
4 Every Xi is maximal connected and X is essentially connected.



Tree sums of maximal connected spaces

Proposition
Let X be an I-compatible tree sum of spaces 〈Xi : i ∈ I〉. We have
that X is P if and only if every Xi is P where P is

“finitely generated”,
“an I-space”,
“finitely generated maximal connected”,
“a maximal connected I-space”.

Corollary
Besides the one-point space, finitely generated maximal connected
spaces are exactly I-compatible tree sums of copies of the
Sierpiński space.



Extensions

There is a standard way of adding a closed disctrete set.

Definition
Let X be a topological space, Y a set disjoint with X , and
F = 〈Fy : y ∈ Y 〉 an indexed family of open filters on X . Let X̂
be the space with universe X ∪ Y and the following topology:

A ⊆ X̂ is open ⇐⇒
{
A ∩ X is open in X ,
A ∩ X ∈ Fy for every y ∈ A ∩ Y .

The space X̂ is called the OF-extension of X by F .
If every Fy is maximal, then X̂ is called MOF-extension.
If every Fy contains I(X ), then X̂ is called I-extension.
If both conditions hold, then X̂ is called ultrafilter I-extension.



Extensions

Remarks
Let X ⊆ X̂ be topological spaces. X̂ is an OF-extension of X
if and only if X is open dense and X̂ \ X is closed discrete
nowhere dense in X̂ .
For I-extensions we may view the open filters Fy containing
I(X ) as ordinary filters on I(X ). Maximal open filters
containing I(X ) correspond to ultrafilters on I(X ).
I-spaces are precisely I-extensions of discrete spaces.
OF-extensions preserve connectedness.



OF-extensions and maximal connectedness

Proposition
Let X be a maximal connected space. For every connected A ⊆ X
we have that A is a MOF-extension of A.

Sketch of proof.
Both A and A are maximal connected.
A is open dense in A and A \ A is closed discrere.
A is an OF-extension of A.
The extending filters have to be maximal.



OF-extensions and maximal connectedness

Observation
A topological space is open-hereditarily irresolvable if and only if
int(A) ∪ int(B) is dense for every its decomposition 〈A,B〉.

Proposition
An OF-extension 〈X̂ , τ〉 of a maximal connected space X
by a family of filters 〈Fy : y ∈ Y 〉 is maximal connected
if and only if it is a MOF-extension of X .

Sketch of proof of “⇐=”.
Let A ⊆ X be non-open, τ∗ := τ ∨ {A}.
WLOG A ⊆ X , and so τ∗ � X is disconnected.
Let 〈U,V 〉 be a (τ∗ � X )-clopen decomposition of X .
intτ (U) ∪ intτ (V ) is τ -dense.
Every maximal filter Fy contains exactly one of U, V .

〈Uτ∗
,V τ∗〉 is a τ∗-clopen decomposition of X̂ .



OF-extensions and maximal connected I-spaces

Proposition
An OF-extension of a topological space X is an I-space if and only
if it an I-extension and X is an I-space.

Corollary
Let X be a maximal connected I-space.

An OF-extension of X is a maximal connected I-space if and
only if it is an ultrafilter I-extension.
A is an ultrafilter I-extension of A for every connected A ⊆ X .



Towards characterization of maximal connected I-spaces

We have described two constructions that preserve the
property of being maximal connected I-space:

I-compatible tree sums,
ultrafilter I-extensions.

Therefore, we may build various maximal connected I-spaces
inductively using the constructions.

[pictures]

Next we shall show how to deconstruct a maximal connected
I-space in order to see whether it was inductively built using
the constructions.



Intersections of connected subsets

We will need the following results.

Theorem [Neumann-Lara, Wilson; 1986]

Let X be an essentially connected space. If A,B ⊆ X are
connected, then A ∩ B is connected as well.

Corollary
Let X be an maximal connected space. If A,B ⊆ X are disjoint
and connected, then |A ∩ B| ≤ 1.

Proof.
We have A ∩ B ⊆ (A \ A) ∪ (B \ B), which is a closed discrete set
since X is submaximal.



Towards characterization of maximal connected I-spaces

Definition
Let X be a maximal connected space, let D be a decomposition of
X into connected subspaces.

We define a graph GD as follows: the vertices are the
members of D and for D 6= D′ ∈ D and x ∈ X , there is an
edge D →x D′ if and only if D ∩ D′ 3 x .
We put D+ := {

⋃
C : C is an undirected component of GD}.

Proposition
Given the objects above, let D ∈ D+ and let C be the component
of GD such that D =

⋃
C. We have that G � C is a tree and D is

the tree sum of its subspaces {C : C ∈ C} with closed discrete set
of gluing points.



Towards characterization of maximal connected I-spaces

Definition
Let X be a maximal connected space. We inductively define
decompositions Dα and corresponding equivalences Eα for every α.

D0 := {{x} : x ∈ X},
Dα+1 := D+

α ,
Eα :=

⋃
β<α Eβ for limit α.

We denote the smallest α such that Dα = Dα+1 by ρ(X ).



Towards characterization of maximal connected I-spaces

Theorem
In the situation above suppose that X is a maximal connected
I-space. Let D ∈ Dα for some α.

1 D is an I-compatible tree sum of ultrafilter I-extensions of
some members of Dβ if α = β + 1. The ultrafilters are
principal if β = 0, free otherwise.

2 D is the direct limit of {C ∈
⋃
β<αDα : C ⊆ D} if α is limit.

Therefore, the members of Dρ(X) are obtained by iteratively
forming tree sums of ultrafilter I-extensions.

Proposition
Every maximal connected space having only finitely many
nonisolated points is an I-space satisfying |D1| < ω and |D2| ≤ 1.
Therefore, it is a finite tree sum of free ultrafilter I-extensions of
finitely generated maximal connected spaces.



Towards characterization of maximal connected I-spaces

Because of the previous results, a maximal connected I-space X
such that |Dρ(X)| ≤ 1 may be called inductive. We shall conclude
with an example of a non-inductive maximal connected I-space.

Example
Let f : X → Y be a bijection between two disjoint sets, let U be a
free ultrafilter on X . Let X̂ be the I-extension of X with discrete
topology by the family 〈Fy : y ∈ Y 〉 where

Fy := {U ∈ U : f −1(y) ∈ U} for every y ∈ Y

The space X̂ is an example of a non-inductive maximal connected
I-space.
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Thank you for your attention.

Highlights
We are interested in maximal connected spaces.

Finitely generated maximal connected spaces were characterized.

Characterizing maximal connected I-spaces would generalize this.

Constructions of I-compatible tree sum and ultrafilter I-extension
preserve the property of being maximal connected I-space.
We can build spaces inductively.

Starting with points and considering how closures intersect, we
obtain a sequence of coarsening decompositions into inductive
connected subspaces.

Not every maximal connected I-space is inductive.
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